One-dimensional random Ising models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1985 J. Phys. A: Math. Gen. 18621
(http://iopscience.iop.org/0305-4470/18/4/012)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 09:26

Please note that terms and conditions apply.

One-dimensional random Ising models

J M Normand, M L Mehta \dagger and H Orland
Service de Physique Théorique, CEN Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette, Cedex France

Received 11 June 1984

Abstract

A study of several one-dimensional random Ising chains and strips is presented. The free energy is expressed in terms of a probability distribution, the support of which is studied with use of a recurrence relation. The shape of the support is shown to vary from a connected set to a Cantor set depending on the type of randomness. Monte Carlo calculations and analytical approximations are presented.

1. Introduction

A lot of effort has been devoted to the study of disordered systems. In particular, the random bond or spin glass systems and the random field systems, although partly understood, remain rather mysterious. The difficulty in the study of these systems is that one has to make quenched averages, i.e. average observables or the free energy.

Several methods have been used in order to perform the quenched average, such as replicas (Edwards and Anderson 1975), the use of dynamics (De Dominicis 1978) and the averaging over stochastic equations of motion (De Dominicis 1979). However, none of these methods is really satisfactory, in the sense that at some stage some ad hoc ansatz has to be made in order to make the problem tractable.

The one-dimensional random-field Ising model has been solved for a specific type of randomness (Fan and McCoy 1969, Brandt and Gross 1978, Derrida et al 1978, Bruinsma and Aeppli 1983, Györgi and Ruján 1984) and exhibits a very rich behaviour with a transition line in the $(H / J, J / T)$ plane. These studies exhibit a devil's staircase integrated probability distribution. This behaviour is suggestive of the complexity that may occur in higher dimensions.

The previous results are generalised with respect to both the models and the nature of the randomness. We consider one-dimensional random-field Ising models as well as spin glass (i.e. random bond) models on a two-layer strip. These models are studied for various probability distributions of the random variables. In § 2, we present three simple spin Hamiltonians. The analytical relations between their partition functions are derived. The general formulation for the calculation of the free energy per site is given in $\S 3$ assuming random couplings or fields. The result is given in terms of a probability density, the support of which is studied in $\S 4$. Section 5 is devoted to some special cases which illustrate the results of § 4. In particular it is shown that under certain conditions the support undergoes a transition from a connected set to a Cantor set. Some numerical and analytical approximations are presented.

[^0]
2. Three models and their interrelations

The three models we consider are:
(1) An Ising chain of N sites in a magnetic field (figure 1(a)). The Hamiltonian is for $N=2,3, \ldots$

$$
\begin{equation*}
\mathscr{H}_{N}^{1}=-\sum_{i=1}^{N-1} J_{i} \sigma_{i} \sigma_{i+1}-\sum_{i=1}^{N} H_{i} \sigma_{i} \tag{2.1}
\end{equation*}
$$

(2) An Ising strip of width two and $N / 2-1$ squares (N sites, figure $1(b)$). The Hamiltonian is for $N=4,6, \ldots$

$$
\begin{equation*}
\mathscr{H}_{N}^{S}=-\sum_{i=1}^{N / 2-1}\left(J_{1, i} \sigma_{1, i} \sigma_{1, i+1}+J_{3, i} \sigma_{2, i} \sigma_{2, i+1}\right)-\sum_{i=1}^{N / 2} J_{2, i} \sigma_{1, i} \sigma_{2, i} \tag{2.2}
\end{equation*}
$$

(3) An Ising strip of width two and $t+t^{\prime}$ triangles ($N=t+t^{\prime}+2$ sites, figure $\left.1(c)\right)$. The Hamiltonian is for $t=1,2, \ldots$ and $t^{\prime}=t-1$ or t
$\mathscr{H}_{N}^{T}=-\sum_{i=1}^{i} J_{1, i} \sigma_{1, i} \sigma_{1, i+1}-\sum_{i=1}^{i^{\prime}+1} J_{2, i} \sigma_{1, i} \sigma_{2, i}-\sum_{i=1}^{\prime^{\prime}} J_{3, i} \sigma_{2, i} \sigma_{2, i+1}-\sum_{i=1}^{i} J_{4, i} \sigma_{1, i+1} \sigma_{2, i}$.
Denoting by \mathscr{H} these nearest neighbour (NN) Ising Hamiltonians, we consider the high-temperature expansion of the partition function for N sites

$$
\begin{equation*}
Z_{N}=\sum_{\{\sigma= \pm 1\}} \exp (-\beta \mathscr{H}) \tag{2.4}
\end{equation*}
$$

which reads

Figure 1. Labelling of coupling constants for the three Ising models considered.
where

$$
\begin{align*}
& z_{N}=\prod_{N N \text { bonds }}\left(1+x_{s s^{\prime}}\right) \prod_{s=1}^{N}\left(1+h_{s}\right), \tag{2.6}\\
& x_{s s^{\prime}}=\tanh \left(\beta J_{s s^{\prime}}\right), \quad h_{s}=\tanh \left(\beta H_{s}\right), \tag{2.7}
\end{align*}
$$

and s and s^{\prime} label the lattice sites.
We are interested in the free energy per site in the thermodynamic limit, i.e.

$$
\begin{equation*}
f=\lim _{N \rightarrow \infty}-(N \beta)^{-1} \ln Z_{N}, \tag{2.8}
\end{equation*}
$$

the non-trivial part of which is given in terms of

$$
\begin{equation*}
g=\lim _{N \rightarrow \infty} g_{N}, \quad g_{N}=N^{-1} \ln z_{N} \tag{2.9}
\end{equation*}
$$

We now derive a three-point recurrence relation for z_{N} which happens to be the same for the three systems considered. This recurrence relation is based on the graphical representation of the high-temperature expansion. Namely, z_{N} is expanded as a series of powers of $x_{\mathrm{ss}^{\prime}}$ and h_{s} and each term in the sum is represented by a configuration of paths drawn on the lattice. Each of these paths is either a closed polygon or a path with two ends, a bond being used at most once. For each path, each bond contributes an $x_{s s}$ and each end point an h_{s}. In what follows, the x and the J related by equation (2.7) carry the same indices; these indices are specified in figure 1 .

For the Ising chain in an external field, equation (2.5) reads

$$
\begin{equation*}
Z_{N}^{1}=2^{N} \prod_{i=1}^{N-1} \cosh \left(\beta J_{i}\right) \prod_{i=1}^{N} \cosh \left(\beta H_{i}\right) z_{N}^{1} . \tag{2.10}
\end{equation*}
$$

On a chain there is no closed polygon and only paths with two end points contribute to z_{N}^{1}. Thus z_{N+1}^{1} is a sum of three terms

$$
\begin{equation*}
z_{N+1}^{1}=z_{N}^{1}+z_{N-1}^{1} x_{N} h_{N} h_{N+1}+\left(z_{N}^{1}-z_{N-1}^{1}\right) x_{N} h_{N+1} / h_{N}, \tag{2.11}
\end{equation*}
$$

which correspond respectively to all configurations of paths (i) without the bond N, $N+1$, (ii) without the bond $N-1, N$ but with the bond $N, N+1$ and (iii) with both the bonds $N-1, N$ and $N, N+1$. Ignoring the upper index of z, the initial conditions are

$$
\begin{equation*}
z_{0}=z_{1}=1 . \tag{2.12}
\end{equation*}
$$

For a strip of squares, labelling z by $n=\frac{1}{2} N$, one has

$$
\begin{equation*}
Z_{N}^{\mathrm{s}}=2^{\mathrm{N}} \cosh \beta J_{2, n} \prod_{\alpha=1}^{3} \prod_{i=1}^{n-1} \cosh \left(\beta J_{\alpha, i}\right) \cdot z_{n}^{\mathrm{s}} \tag{2.13}
\end{equation*}
$$

In zero field, only closed polygons contribute to z_{n}^{S}. Arguments similar to the above give

$$
\begin{equation*}
z_{n+1}^{\mathrm{s}}=z_{n}^{\mathrm{S}}+z_{n-1}^{\mathrm{S}} x_{1, n} x_{2, n} x_{3, n} x_{2, n+1}+\left(z_{n}^{\mathrm{s}}-z_{n-1}^{\mathrm{s}}\right) x_{1, n} x_{3, n} x_{2, n+1} / x_{2, n}, \tag{2.14}
\end{equation*}
$$

with the initial conditions (2.12).
For a strip of triangles, labelling z by $n=N-1$, one has

$$
\begin{equation*}
Z_{N}^{\top}=2^{N} \prod_{N N \text { bonds }} \cosh \left(\beta J_{s s}\right) z_{n}^{\top}, \tag{2.15}
\end{equation*}
$$

where z_{n}^{T} satisfies equation (2.12) and a three-point recurrence relation similar to equation (2.14).

Hence, in these three cases the recurrence relation for z is of the form

$$
\begin{equation*}
z_{n+1}=\left(1+a_{n}\right) z_{n}-a_{n}\left(1-b_{n}\right) z_{n-1}, \quad n=1,2, \ldots \tag{2.16}
\end{equation*}
$$

with the initial conditions (2.12). The a_{n} and b_{n} are listed in table 1 and satisfy

$$
\begin{equation*}
0 \leqslant b_{n} \leqslant 1, \quad 0 \leqslant a_{n}^{2} b_{n} / b_{n+1} \leqslant 1, \quad n=1,2, \ldots \tag{2.17}
\end{equation*}
$$

If one has the same set $\left\{a_{n} ; n=1,2, \ldots\right\}$ and the same set $\left\{b_{n} ; n=1,2, \ldots\right\}$ for any two of the three cases considered above, the recurrence relations (2.16) will be the same. The initial conditions being the same, the corresponding z_{n} will be equal. One thereby relates the partition functions $Z_{n}^{1}, Z_{2 n}^{S}$ and Z_{n+1}^{T}, i.e. they differ only by powers of two and products of factors $\cosh \beta J$ and $\cosh \beta H$. This equivalence between the three cases can also be obtained directly by suitable changes of the variables σ_{s} in (2.4) \dagger.

Let us notice that a recurrence relation similar to equation (2.16) can also be derived for the $\mathrm{O}(n)$ vector spin model for the square strip problem. This study will be published elsewhere.

3. General formulation for random systems

In the models of disordered systems the coefficients of the recurrence relation for z_{N} are random variables. Then the calculation of g is seen to be equivalent to finding the behaviour for large N of a product of either N two by two random matrices or N random homographic transformations. It is also equivalent to solving an integral equation for a probability density $P(r)$ such that

$$
\begin{equation*}
g=\int \operatorname{dr} P(r) \ln (1+r) \tag{3.1}
\end{equation*}
$$

The quantity g is usually referred as the Lyapunov exponent of the probability density.
Indeed, to go further in the computation of z_{n}, let u_{i}, v_{i} be defined by

$$
\binom{u_{i+1}}{v_{i+1}}=M_{i}\binom{u_{i}}{v_{i}}, \quad M_{i}=\left(\begin{array}{cc}
1+a_{i} & -a_{i}\left(1-b_{i}\right) \tag{3.2}\\
1 & 0
\end{array}\right), \quad i=1,2, \ldots
$$

with $u_{1}=v_{1}=1$. Then one has

$$
\begin{equation*}
z_{n}=u_{n}, \quad n=1,2, \ldots \tag{3.3}
\end{equation*}
$$

Another formulation in terms of homographic mappings is obtained by setting $u_{i} / v_{i}=$ $1+r_{i}, i=1,2, \ldots$ Then one gets $r_{1}=0$ and

$$
\begin{equation*}
r_{i+1}=a_{i}\left(r_{i}+b_{i}\right) /\left(r_{i}+1\right)=T_{i}\left(r_{i}\right), \quad i=1,2, \ldots \tag{3.4}
\end{equation*}
$$

Instead of T_{i} we also use the notation T_{a}, b_{i}. Equation (3.3) now becomes

$$
\begin{equation*}
z_{n}=\prod_{i=1}^{n}\left(1+r_{i}\right) . \tag{3.5}
\end{equation*}
$$

\# We are grateful to B Derrida for informing us that the similarity between Z_{n}^{1} and $Z_{2 n}^{S}$ was also noticed by Maillard (1978).

Let the a_{i} and b_{i} take values which are either well defined or at random with a normalised probability density $p_{n}\left(a_{n}, b_{n} ; \ldots ; a_{1}, b_{1}\right)$. It follows that the normalised density distribution $P_{n}(r)$ of the r is given for $n=1,2, \ldots$ by

$$
\begin{equation*}
P_{n}(r)=\int \prod_{i=1}^{n} \mathrm{~d} a_{i} \mathrm{~d} b_{i} p_{n}\left(a_{n}, b_{n} ; \ldots ; a_{1}, b_{1}\right) \delta\left[r-T_{n} \ldots T_{1}(0)\right], \tag{3.6}
\end{equation*}
$$

and the integrated distribution function $F_{n}(r)$ reads

$$
\begin{align*}
F_{n}(r) & =\int_{-\infty}^{r} \mathrm{~d} r^{\prime} P_{n}\left(r^{\prime}\right) \\
& =\int \prod_{i=1}^{n} \mathrm{~d} a_{i} \mathrm{~d} b_{i} p_{n}\left(a_{n}, b_{n} ; \ldots ; a_{1}, b_{1}\right) \theta\left[r-T_{n} \ldots T_{1}(0)\right] . \tag{3.7}
\end{align*}
$$

As the partition function (2.4) is positive, so is z_{n}. Hence $1+r_{i}$ is positive for $i=1,2, \ldots$. Therefore, $P_{n}(r)$ and $F_{n}(r)$ vanish for $r<-1$. Then the non-trivial part g_{N}, equation (2.9), of the free energy per site is expressed in terms of

$$
\begin{equation*}
\frac{1}{n} \ln z_{n}=\frac{1}{n} \sum_{i=1}^{n} \ln \left(1+r_{i}\right)=\int \mathrm{d} r P_{n}(r) \ln (1+r) . \tag{3.8}
\end{equation*}
$$

In order to obtain the thermodynamic limit (2.8) one has to find the behaviour for large n of either the product of matrices $M_{n} \ldots M_{1}$ or the density distribution $P_{n}(r)$. Assuming the pairs a_{i}, b_{i} independent and distributed aecording to $p\left(a_{i}, b_{i}\right)$ and taking the limit of $P_{n}(r)$ as n goes to infinity, one gets a stationary distribution $P(r)$; solution of the integral equation (Dyson 1953)

$$
\begin{equation*}
P(r)=\int \mathrm{d} a \mathrm{~d} b p(a, b) \int \mathrm{d} r^{\prime} P\left(r^{\prime}\right) \delta\left\{r-T_{a, b}\left(r^{\prime}\right)\right\} \tag{3.9}
\end{equation*}
$$

with the boundary condition

$$
\begin{equation*}
P(r)=0 \quad \text { for } \quad r<-1 \tag{3.10}
\end{equation*}
$$

Then g is given by (3.1). The integrated distribution function satisfies (provided $T_{a, b}$ has an inverse $T_{a, b}^{-1}$, i.e. $a \neq 0$)

$$
\begin{equation*}
F(r)=\int \mathrm{d} a \mathrm{~d} b p(a, b)\left\{\theta(r-a)+\operatorname{sgn}(a) F\left[T_{a, b}^{-1}(r)\right]\right\}, \tag{3.11}
\end{equation*}
$$

where $\operatorname{sgn}(a)=1$ if $a>0$ and -1 if $a<0$, and $F(r)$ vanishes for $r<-1$.
For the existence of the thermodynamic limit g and the stationary distribution $P(r)$ referred above, we can appeal to Furstenberg's theorems (Furstenberg 1963). Actually Furstenberg's results do not always apply as such. Indeed, the matrix elements of M_{i} may be negative and furthermore these matrices are not always independent. This follows from the fact that it is the $J_{s s^{\prime}}$ and H_{s} which are assumed to be either well defined or independent random variables. Then, from the relations given in table 1 , if the b_{i} are still independent, this may no longer be true for the a_{i}. Indeed, a_{i} depends upon the ratio of parameters at two different sites. For example, if the H_{i} and thus the $h_{i}, i=1, \ldots, n$ are independent random variables with the same probability density $\mu\left(h_{i}\right)$, one sees that for $n=2,3, \ldots$ the ratios $\rho_{i}=h_{i+1} / h_{i}, i=1, \ldots, n-1$ are distributed

Table 1. Parameters a_{i} and b_{i} for the three systems considered. N is the number of sites.

$i=1, \ldots, n-1$	Chain $n=N$	Square strip $n=N / 2$	Triangular strip $n=N-1=t+t^{\prime}+1$	
			$i=2 p-1=1,3, \ldots$	$i=2 p=2,4, \ldots$
a_{i}	$x_{i} \frac{h_{i+1}}{h_{1}}$	$x_{1,1}, x_{3, i} \frac{x_{2,1+1}}{x_{2,1}}$	$x_{1, p} \frac{x_{4, p}}{x_{2, p}}$	$x_{3, p} \frac{x_{2, p+1}}{x_{4, p}}$
b_{1}	h_{1}^{2}	$\left(x_{2,4}\right)^{2}$	$\left(x_{2, p}\right)^{2}$	$\left(x_{4, p}\right)^{2}$

with a probability density
$P\left(\rho_{1}, \ldots, \rho_{n-1}\right)=\int_{-\infty}^{+\infty} \mathrm{d} h h^{n-1}\left|\rho_{1}^{n-2} \rho_{2}^{n-3} \ldots \rho_{n-2}\right| \mu(h) \mu\left(\rho_{1} h\right) \ldots \mu\left(\rho_{n-1} \ldots \rho_{1} h\right)$.

Hence, the ρ_{i} are not independent, except if the density $\mu(h)$ is uniform. The qualitative relations between the parameters $J_{s s^{\prime}}, H_{s}$ and a_{i}, b_{i} are summarised in table 2.

Table 2. Qualitative relations between the parameters $J_{s s}, H_{s}$ and a_{i}, b_{i} for the Ising chain and the square strip. For physical cases, a_{i} and b_{j} must satisfy equation (2.17).

Ising	Square strip	a_{i}	$0 \leqslant b_{i} \leqslant 1$
$H_{2}=H$	$\begin{aligned} & J_{2, i}=J_{2} \\ & J_{1, i} \text { and (or) } J_{3,2} \text { random } \end{aligned}$	random, independent	b
J_{1} random			
		, $\left\|a_{i}\right\| \leqslant 1$	
$H_{1}=\begin{gathered} H \text { prob. } \\ -H \text { prob. } 1-p \end{gathered}$	$J_{2,4}=\begin{gathered}J_{2} \text { prob. p } \\ -J_{2} \text { prob. } 1-p\end{gathered}$	random, not independent$\left\{\begin{array}{l}\text { except } \\ \text { if } p=\frac{1}{2}\end{array} ~\right.$	
$H_{\text {random }}(\neq \pm H)$	J_{2}, random ($\neq \pm J_{2}$)	random, not independent except if the distribution	random,
J_{i} random	$J_{1,1}$, and (or) J_{3}, random	of H_{1} (or $J_{2,1}$) is uniform	independent

Nevertheless, Furstenberg's results apply to a product of transfer matrices in terms of which the partition function (2.4) can be expressed thereby proving the existence of f.

From now on we consider for simplicity only the cases when b_{i} takes a fixed value $b(0 \leqslant b \leqslant 1)$ and the $a_{i}\left(\left|a_{i}\right| \leqslant 1\right)$ are independent random variables with a probability density $p(a)$. As we are unable to solve the integral equations (3.9) or (3.11), we study the support \mathscr{S} of the probability density $P(r)$ through the iteration equation (3.4). General properties of \mathscr{S} are derived in $\S 4$ and they are illustrated for some particular cases in § 5 .

4. General properties of the support of $P(r)$

All the results we derive for $\mathscr{\mathscr { S }}$ are based on the following properties of the mapping $T_{a}(r) \equiv T_{a, b}(r)$ (from now on we will drop the fixed index b), see figure 2 :

Figure 2. $T_{a}(r)$ with $a>0$. The stable and unstable fixed points are respectively f_{a} and \tilde{f}_{a}.
(i) $T_{a}(r)$ is a monotonous increasing (resp. decreasing) function of r when a is positive (resp. negative).
(ii) It is a monotonous increasing function of a.
(iii) It has two real fixed points. Actually, we use the homographic character of T_{a} only to compute these points:

$$
\begin{align*}
& f_{a}=\frac{1}{2}\left(a-1+\Delta^{1 / 2}\right), \quad \tilde{f}_{a}=\frac{1}{2}\left(a-1-\Delta^{1 / 2}\right) \\
& \Delta=(1-a)^{2}+4 a b=(1+a)^{2}-4 a(1-b), \tag{4.1}
\end{align*}
$$

and f_{a} is stable while \tilde{f}_{a} is unstable. Furthermore (3.4) can be rewritten as

$$
\begin{equation*}
\frac{r_{i+1}-f_{a}}{r_{i+1}-\tilde{f}_{a}}=k_{a} \frac{r_{i}-f_{a}}{r_{i}-\tilde{f}_{a}}, \quad k_{a}=\frac{1+a-\Delta^{1 / 2}}{1+a+\Delta^{1 / 2}} \tag{4.2}
\end{equation*}
$$

and k_{a} has the same sign as a. Hence for large i, r_{i} tends to f_{a} either in a monotonous or oscillating way according to whether a is positive or negative.
(iv) $T_{a}(r)$ is linear in a and $T_{-a}(r)=-T_{a}(r)$.
(v) For all $a \neq 0, T_{a}(r)$ maps the real line \mathbb{R} onto itself.

Let \mathscr{A} be the set of possible values of a. From equation (3.6) the support \mathscr{S}_{n} of $P_{n}(r)$ is

$$
\begin{equation*}
\mathscr{S}_{n}=\left\{T_{a_{n}} \ldots T_{a_{1}}(0) ; \forall a_{n}, \ldots, a_{1} \in \mathscr{A}\right\} \tag{4.3}
\end{equation*}
$$

namely a set of at most \mathcal{N}^{n} points if \mathscr{A} has a finite number \mathcal{N} of elements. If zero is a possible value of a, then, since $T_{0}(r)=0$, one generates at each step of iteration the initial value $r=0$. One therefore has

$$
\begin{equation*}
\text { if } \quad 0 \in \mathscr{A} \quad \text { then } \quad \mathscr{S}_{n} \subseteq \mathscr{S}_{n+1}, \quad n=0,1, \ldots \tag{4.4}
\end{equation*}
$$

It follows from property (iv) and equation (3.6) that

$$
\begin{equation*}
\text { if } \quad p(a)=p(-a) \quad \text { then } \quad P(r)=P(-r) \text {, } \tag{4.5}
\end{equation*}
$$

and therefore also $F(r)+F(-r)=1$.
Using the iterative scheme, we determine in appendix 1 the minimum and the maximum values $r_{\text {min }}$ and $r_{\text {max }}$ that r takes in the support \mathscr{F}. These values are listed

Table 3. $r_{\min }$ and $r_{\max }$ are the end points of the smallest interval \mathscr{R}_{0} outside of which $P(r)$ vanishes. The maximum and the minimum values taken by the parameter a are given in terms of the α in the first column for the three considered cases, of appendix 1. f_{α} is the attractive fixed point of T_{α} gaven by equation (4.1).

2	$r_{\text {min }}$	$r_{\text {max }}$
$0 \leqslant \alpha_{\text {min }} \leqslant \alpha_{\text {max }} \leqslant 1$	$f_{\alpha_{\text {min }}}$	$f_{\alpha_{\text {max }}}$
$\begin{aligned} -1 & \leqslant \bar{\alpha}_{\text {min }} \leqslant \bar{\alpha}_{\text {max }} \leqslant 0 \\ 0 & \leqslant \alpha_{\text {min }} \leqslant \alpha_{\text {max }} \leqslant 1 \end{aligned}$	$T_{\hat{u}_{\text {min }}}\left(f_{\alpha_{\text {min }}}\right)$	$f_{\alpha \text { max }}$
$-1 \leqslant \bar{\alpha}_{\text {min }} \leqslant \hat{\alpha}_{\text {max }} \leqslant 0$	attractive fixed point of $T_{\bar{\alpha}_{\min }} T_{\tilde{\alpha}_{\max }}$	attractive fixed point of $T_{\bar{\alpha}_{\text {max }}} T_{\bar{\alpha}_{\text {min }}}$

in table 3 for the three cases we have to distinguish namely a takes values which are (1) non-negative, (2) positive and negative and (3) non-positive. Hence the support \mathscr{S} of $P(r)$ is within the finite interval \mathscr{R}_{0}

$$
\begin{equation*}
\mathscr{S} \subseteq \mathscr{R}_{0}=\left[r_{\min }, r_{\max }\right], \tag{4.6}
\end{equation*}
$$

and $P(r)$ vanishes outside \mathscr{R}_{0}, i.e. on

$$
\begin{equation*}
\mathscr{D}_{0}=\mathbb{R}-\mathscr{R}_{0} \tag{4.7}
\end{equation*}
$$

The interval \mathscr{R}_{0} is also characterised by the following property: it is the largest interval such that

$$
\begin{equation*}
\forall r \in \mathscr{R}_{0} \quad \text { and } \quad \forall a \in \mathscr{A} \quad T_{a}(r) \in \mathscr{R}_{0} \tag{4.8}
\end{equation*}
$$

In other words, once a point r belongs to \mathscr{R}_{0}, all its images in the iterative procedure remain in \mathscr{R}_{0}. This follows from the property (iii) and the attractive character of the fixed points in terms of which $r_{\text {min }}$ and $r_{\text {max }}$ are defined.

Now, since $P(r)$ vanishes on \mathscr{D}_{0}, from equation (3.9) it also vanishes on the intersection of the images $T_{a}\left(\mathscr{D}_{0}\right)$ for all a in \mathscr{A}. Repeating this argument one finds that $P(r)$ vanishes on

$$
\begin{equation*}
\mathscr{X}_{i+1}=\bigcap_{a \in \mathscr{A}} T_{a}\left(\mathscr{D}_{i}\right), \quad i=0,1, \ldots \tag{4.9}
\end{equation*}
$$

Consequently, the support \mathscr{S} of $P(r)$ is within the complement of \mathscr{D}_{i} with respect to the real line, i.e.

$$
\begin{equation*}
\mathscr{S} \subseteq \mathscr{R}_{i}=\mathbb{R}-\mathscr{D}_{i}, \quad i=0,1, \ldots \tag{4.10}
\end{equation*}
$$

It is shown in appendix 2 that the sequence of the sets \mathscr{R}_{i} is also defined by

$$
\begin{equation*}
\mathscr{R}_{i+1}=\bigcup_{a \in \mathscr{A}} T_{a}\left(\mathscr{R}_{i}\right), \quad i=0,1, \ldots \tag{4.11}
\end{equation*}
$$

and furthermore it forms a sequence of nested intervals

$$
\begin{equation*}
\mathscr{R}_{i+1} \subseteq \mathscr{R}_{1}, \quad i=0,1, \ldots \tag{4.12}
\end{equation*}
$$

or equivalently from (4.10) $\mathscr{D}_{i} \subseteq \mathscr{D}_{i+1}$. Depending upon the set \mathscr{A} and the value b it is possible that $\mathscr{R}_{1}=\mathscr{R}_{0}$ or that $\mathscr{R}_{i+1}=\mathscr{R}_{i}$ from some i onwards. Then $\mathscr{S}=\mathscr{R}_{i}$. On the other hand if \mathscr{R}_{i+1} is strictly included in \mathscr{R}_{i} for any i, then at each step a new domain
$\mathscr{R}_{i}-\mathscr{R}_{i+1}$ is excluded from the support \mathscr{S}. In other words, more and more 'holes' appear in \mathscr{R}_{0} and the support of $P(r)$ may reduce to a Cantor set, cf $\S 5.1$.

It should be noted that all the previous discussion of the support of $P(r)$ depends only upon the value of b and the support \mathscr{A} of $p(a)$, but not upon the value of the probability density $p(a)$ itself. All these general considerations are now illustrated with some particular examples.

5. Some special cases

The support of $P(r)$ is studied in the case where the a_{i} take firstly only two values and then more than two values. We end this section with some results about the integrated distribution function. Typical cases are illustrated by numerical examples. The distribution $P(r)$ is computed by the Monte Carlo method: the a_{i} are sampled according to $p(a)$ and the recurrence relation (3.4) is iterated throwing away the first generations of points.

5.1. The a_{i} take only two values

(i) Let us denote these values by γ_{1} and γ_{2}. For brevity, we note $T_{i} \equiv T_{\gamma_{1}}$ and the attractive fixed point $f_{1}=f_{\gamma_{i}} ; i=1,2$, given by equation (4.1). The three cases we have to distinguish are
(1) $0 \leqslant \gamma_{1}<\gamma_{2} \leqslant 1$,
(2) $-1 \leqslant \gamma_{1}<0 \leqslant \gamma_{2} \leqslant 1$,
(3) $-1 \leqslant \gamma_{1}<\gamma_{2} \leqslant 0$.

They are associated with figures 3,4 and 5 respectively. The support \mathscr{f} of $P(r)$ is such that $\mathscr{S} \subseteq \mathscr{R}_{0}=\left[r_{\text {min }}, r_{\text {max }}\right]$. The values of $r_{\text {min }}$ and $r_{\text {max }}$ are given on the corresponding figures, except for the third case where the expressions are more complicated, cf table 3. From equation (4.11) $\mathscr{R}_{1}=T_{y_{1}}\left(\mathscr{R}_{0}\right) \cup T_{y_{2}}\left(\mathscr{R}_{0}\right)$, and two cases may occur:
(1) $\mathscr{R}_{1}=\mathscr{R}_{0}$ (figures $3(a), 4(a)$ and $\left.5(a)\right)$ then the support of $P(r)$ is $\mathscr{I}=\mathscr{R}_{0}$.
(2) $\mathscr{R}_{1} \subset \mathscr{R}_{0}$ (figures $3(b), 4(b)$ and $5(b)$), then a first hole $\mathscr{H}_{1}=\mathscr{R}_{0}-\mathscr{R}_{1}$ excluded from \mathscr{S} appears in \mathscr{R}_{0}. This happens iff
(1) $T_{1}\left(r_{\max }\right)<T_{2}\left(r_{\min }\right)$,
(2) $T_{1}\left(r_{\text {min }}\right)<T_{2}\left(r_{\text {min }}\right)$,
(3) $T_{1}\left(r_{\text {min }}\right)<T_{2}\left(r_{\max }\right)$,
respectively for the three cases considered. In appendix 3 we discuss in terms of γ_{1}, γ_{2} and b when the two previous conditions can be realised, see also figure 6 . Now if \mathscr{H}_{1} is not empty, it is easy to show on the figures, but cumbersome to describe, that $\mathscr{R}_{2}=\mathscr{R}_{1}-\mathscr{H}_{2}$ where the new domain \mathscr{H}_{2} excluded from \mathscr{S} is the direct sum of $T_{1}\left(\mathscr{H}_{1}\right)$ and $T_{2}\left(\mathscr{H}_{1}\right)$. Repeating this argument, one finds that all the images of \mathscr{H}_{1} obtained by applying T_{1} or T_{2} any number of times and in any order are pairwise disjoint and thus excluded from \mathscr{F}. These results directly follow from the fact that $T_{a}(r)$ is a monotonous function of r. Thus the number of holes has the power of the continuum. The support \mathscr{F} contains the end points of these holes, hence it has also the power of the continuum. Actually \mathscr{S} consists of the fixed points of any finite sequence of T_{i}, their images and their accumulation points. Consequently in every neighbourhood of a point of \mathscr{S} there

(a)

(b)

Figure 5. The same as in figure 3, except that now the values of a_{i} are $\gamma_{1}<\gamma_{2}<0$.

Figure 6. The γb plane when the a, take two values $+\gamma$ and $-\gamma$. According to equation (A3.4) the critical line is indicated. The approximation studied in 85.1 . (ii) is valid in the hatched region.
is a hole. The support \mathscr{S} of $P(r)$ is then a Cantor set (e.g. Hausdorff 1957). Figures 7 and 8 show Monte Carlo calculation for some typical cases.
(ii) To illustrate the previous results we give an analytical approximation in the case when the a_{i} take the values $\pm a(a>0)$ with probability $\frac{1}{2}$. Let us define

$$
\begin{align*}
& b^{1 / 2}=\tanh \varphi \\
& r_{n}=b^{1 / 2} \tanh \theta_{n} \tag{5.1}\\
& f=\frac{1}{2}\left\{-(1-a)+\left[(1-a)^{2}+4 a b\right]^{1 / 2}\right\}=b^{1 / 2} \tanh \theta^{*}
\end{align*}
$$

The recurrence relation (3.4) becomes

$$
\begin{equation*}
\tanh \theta_{n+1}=\varepsilon_{n} a \tanh \left(\theta_{n}+\varphi\right) \tag{5.2}
\end{equation*}
$$

where ε_{n} is ± 1 with probability $\frac{1}{2}$. Two cases can be approximated easily:
(1) $a \rightarrow 0$, then θ_{n} is of order a and the equation (5.2) can be expanded as

$$
\begin{equation*}
\theta_{n+1}=\varepsilon_{n} a\left[b^{1 / 2}+\theta_{n}(1-b)\right] . \tag{5.3}
\end{equation*}
$$

(2) $b \rightarrow 0$ and $a \neq 1$, then $f \sim[a /(1-a)] b$ and thus $\theta^{*} \sim[a /(1-a)] b^{1 / 2}$. Since φ is of order $b^{1 / 2}$ and $\left|\theta_{n}\right| \leqslant \theta^{*}, \theta_{n}$ is also of order $b^{1 / 2}$ and equation (5.2) becomes

$$
\begin{equation*}
\theta_{n+1}=\varepsilon_{n} a\left(b^{1 / 2}+\theta_{n}\right) . \tag{5.4}
\end{equation*}
$$

Both equations (5.3) and (5.4) are of the same type, and their solutions read

$$
\begin{equation*}
\theta_{n}=a b^{1 / 2}\left(\varepsilon_{n-1}+\varepsilon_{n-1} \varepsilon_{n-2} \lambda+\ldots+\varepsilon_{n-1} \ldots \varepsilon_{1} \lambda^{n-2}\right) \tag{5.5}
\end{equation*}
$$

where in case (1) $\lambda=a(1-b)$ and in case (2) $\lambda=a$. Since the ε_{i} are independent random variables equal to ± 1 with probability $\frac{1}{2}$, the same holds true for any of their products. Therefore the last equation takes the form

$$
\begin{equation*}
\theta_{n}=a b^{1 / 2} \sum_{p=1}^{n-1} \varepsilon_{p} \lambda^{p-1} \tag{5.6}
\end{equation*}
$$

Figure 7. (a) The probability distribution $P(r)$ and (b) the integrated probability distribution $F(r)$, calculated with 11000 iterations, discarding the first 1000 . Figure (a) is a histogram with 640 bins on the r axis. The parameters are $\gamma_{2}=-\boldsymbol{\gamma}_{1}=0.81$ and $b=$ 0.64 . The support of $P(r)$ is a Cantor set, and $F(r)$ is a devil's staircase.

Figure 8. Same as figure 7. The parameters are $\gamma_{2}=-\gamma_{1}=0.9$ and $b=0.25$. The support of $P(r)$ is connected and $F(r)$ is continuous.

Now, setting $\varepsilon_{p}=2 n_{p}-1$, the n_{p} are independent random variables equal to 0 or 1 with probability $\frac{1}{2}$, and the above equation becomes

$$
\begin{equation*}
\theta_{n}=a b^{1 / 2}\left(2 \sum_{p=1}^{n-1} n_{p} \lambda^{p-1}-\frac{\lambda_{n}-1}{\lambda-1}\right) . \tag{5.7}
\end{equation*}
$$

Since we are interested in the tail of the distribution of the θ_{n} and $\lambda<1$, equation (5.7) simplifies to

$$
\begin{equation*}
\theta_{n}=2 a b^{1 / 2} \sum_{p=1}^{n-1} n_{p} \lambda^{p-1}-\frac{a b^{1 / 2}}{1-\lambda} \tag{5.8}
\end{equation*}
$$

It follows that the support of the θ_{n} is either a Cantor set if $\lambda<\frac{1}{2}$ or a connected segment if $\lambda \geqslant \frac{1}{2}$. Thus in case (1), since $\lambda \rightarrow 0$ the support is always a Cantor set, whereas in case (2) the support exhibits a transition for $a=\frac{1}{2}$ which is on the transition line $2 a=1+b$, equation (A3.4), in the limit $b \rightarrow 0$, see figure 6 .

The Lyapunov exponent, equation (3.1), can be computed in this approximation. One finds

$$
\begin{equation*}
g=-\frac{1}{2} a^{2} b^{2}\left(1-\lambda^{2}\right)^{-1} \tag{5.9}
\end{equation*}
$$

As expected in a one-dimensional system, the free energy, related to g by equations (2.8) and (2.9) does not have any singularity.

5.2. The a_{i} take more than two discrete values

The description of the support \mathscr{S} of $P(r)$ can now be more complicated. We illustrate this by describing the generic case where the a_{i} take three positive values $\gamma_{1}<\gamma_{2}<\gamma_{3}$. Then, $\mathscr{S} \subseteq \mathscr{R}_{0}=\left[f_{1}, f_{3}\right]$. Three situations, shown on figures $9(a),(b)$ and (c) respectively, may happen:
(1) $\mathscr{R}_{1}=\mathscr{R}_{0}$ then the support of $P(r)$ is $\mathscr{S}=\mathscr{R}_{0}$.
(2) $\mathscr{R}_{1} \subset \mathscr{R}_{0}$ and the hole $\mathscr{H}_{1}=\mathscr{R}_{0}-\mathscr{R}_{1}$ is connected. Then, on one side (e.g. the right one on figure $9(b)$) there exists an infinite number of pairwise disjoint images of \mathscr{H}_{1} which are also excluded from the support; while on the other side the number of images of \mathscr{H}_{1} is finite (possibly zero). Indeed, the lower ends of these images evolve by the mapping T_{2} while the upper ends by T_{1} (for the case of figure $9(b)$). Since $f_{1}<f_{2}$, these two ends must cross and the image of the hole disappears without descendent.
(3) $\mathscr{R}_{1} \subset \mathscr{R}_{0}$ and the hole $\mathscr{H}_{1}=\mathscr{R}_{0}-\mathscr{R}_{1}$ is composed of two disconnected parts. Then in each of the three intervals which compose \mathscr{R}_{1} there exists an infinite number of pairwise disjoint images of \mathscr{H}_{1}, and finally \mathscr{S} is a Cantor set.

All the previous results are immediate consequences of the properties (i) and (ii) of T_{a} given in § 4.

5.3. The a_{i} take a continuous set of values

(i) We first consider the case where the a_{i} take their values γ in a continuous and connected set $\mathscr{A}=\left[\gamma_{1}, \gamma_{2}\right]$. Then one sees that in the three possible cases described on figures 3,4 and 5 , as γ continuously varies from γ_{1} to $\gamma_{2}, T_{\gamma}\left(\mathscr{R}_{0}\right)$ covers the whole \mathscr{R}_{0}. Therefore $\mathscr{R}_{1}=\mathscr{R}_{0}$ and the support of $P(r)$ is $\mathscr{S}=\mathscr{R}_{0}$.

(a)

(6)

Figure 9. The mappings T_{i} and the first sets \mathscr{R}_{i}. The a_{1} take three positive values $\gamma_{1}<\gamma_{2}<\gamma_{3}$. In (a) the support of $P(r)$ is \mathscr{R}_{0} with no hole. In (b) there is an infinite sequence of holes on the right of the initial hole and a finite sequence on its left. In (c) there are three infinite sequences of holes.
(ii) Let now \mathscr{A} be the union of two disconnected continuous sets $\left[\gamma_{1}, \gamma_{2}\right]$ and [$\left.\gamma_{3}, \gamma_{4}\right]$. We consider only the generic case when the a_{i} take positive values $\left(0<\gamma_{1}<\right.$ $\gamma_{2}<\gamma_{3}<\gamma_{4}$). Then using the same arguments as before, one shows that there never exists an infinite number of holes in \mathscr{R}_{0}. Indeed, either $\mathscr{R}_{1}=\bigcup_{y \in \mathscr{A}} T_{\gamma}\left(\mathscr{R}_{0}\right)=\mathscr{R}_{0}$ as in figure $10(a)$ and then the support of $P(r)$ is $\mathscr{S}=\mathscr{R}_{0}$, or there exists a first hole $\mathscr{H}_{1}=\mathscr{R}_{0}-\mathscr{R}_{1}$ as in figure $10(b)$. But in this latter case, at the next step, either this hole has no descendent as shown on the right-hand side of figure $10(b)$, or there still exists a hole (left-hand side of figure $10(b)$). But as in subsection 5.2 this hole must disappear since its lower ends evolve by T_{2} while its upper ones by T_{1}, and $\gamma_{1}<\gamma_{2}$.

5.4. The integrated distribution function $F(r)$

Clearly $F(r)=0$ for $r<r_{\text {min }}$ and $F(r)=1$ for $r>r_{\text {max }}$. Also $F(r)$ is constant in any interval in \mathscr{R}_{0} not belonging to the support of $P(r)$, if such interval exists. The value of $F(r)$ at any of these flat portions can be determined from equation (3.9) if one knows how to characterise these flat portions. For simplicity the results are given only

Figure 10. The mappings T_{1} and the first intervals \mathscr{R}_{1}. The a_{1} take values in two disconnected intervals $\left[\gamma_{1}, \gamma_{2}\right]$ and [γ_{3}, γ_{4}] with $0<\gamma_{1}<\gamma_{2}<\gamma_{3}<\gamma_{4}$. In (a) the support of $P(r)$ is \mathscr{R}_{0} with no hole. In (b) there is a finite sequence of holes in the left of the initial hole and no hole on its right.
for the cases studied in § 5.1, when the a_{i} take two values γ_{1} and γ_{2} with probabilities p_{1} and p_{2} respectively $\left(p_{1}+p_{2}=1\right)$, with either $0 \leqslant \gamma_{1}<\gamma_{2}$ or $\gamma_{1}<0 \leqslant \gamma_{2}$. Then we assume that we are in the case when $\mathscr{R}_{t+1} \subset \mathscr{R}_{i}$ for all $i=0,1, \ldots$; i.e. the support of $P(r)$ is a Cantor set.

Let us first consider the case when γ_{1} and γ_{2} are positive. Then, according to figure $3(b), F(r)$ is constant in the interval $\left[\mathscr{H}_{1}\right]=\left[T_{1}\left(f_{2}\right), T_{2}\left(f_{1}\right)\right]$ where $T_{i} \equiv T_{\gamma}, i=1,2$. It is also constant in any image of $\left[\mathscr{H}_{1}\right]$ by T_{1} and T_{2} any number of times and in any order, i.e. in the interval $\left[T_{\alpha_{1}} \ldots T_{\alpha_{n}} T_{1}\left(f_{2}\right), T_{\alpha_{1}} \ldots T_{\alpha_{n}} T_{2}\left(f_{1}\right)\right]$, where each $\alpha_{j}, j=1, \ldots, n$ is either γ_{1} or γ_{2}. As T_{1} maps \mathscr{R}_{0} on $\left[f_{1}, T_{1}\left(f_{2}\right)\right]$ and this happens with probability p_{1}, one has $F(r)=p_{1}$ for r in $\left[\mathscr{H}_{1}\right]$. Since T_{1} maps on the lower side and T_{2} on the upper side, and these with probabilities p_{1} and p_{2} respectively, one sees that

$$
\begin{align*}
& F\left(\left[T_{1} X, T_{1} Y\right]\right)=p_{1} F([X, Y]) \\
& 1-F\left(\left[T_{2} X, T_{2} Y\right]\right)=p_{2}\{1-F([X, Y])\} \tag{5.10}
\end{align*}
$$

where $[X, Y]$ is any of the flat portions mentioned above. Thereby we can determine the value of $F(r)$ for r belonging to any interval where $P(r)=0$. This kind of integrated probability distribution is referred as a devil's staircase, see figure $7(b)$.

Next, let the a_{i} take the two values $\gamma_{1}<0$ and $\gamma_{2}>0$. According to figure $4(b)$, $F(r)$ is constant in the interval $\left[\mathscr{H}_{1}\right]=\left[T_{1}\left(r_{\text {min }}\right), T_{2}\left(r_{\text {min }}\right)\right], r_{\text {min }}=T_{1}\left(f_{2}\right)$. It is also constant on the images of $\left[\mathscr{H}_{1}\right],\left[T_{\alpha_{1}} \ldots T_{\alpha_{n}} T_{\alpha}\left(r_{\min }\right), T_{\alpha_{1}} \ldots T_{\alpha_{n}} T_{\alpha}\left(r_{\text {min }}\right)\right]$ where each α_{j} for $j=1, \ldots, n$ is either γ_{1} or γ_{2}; either $\alpha=\gamma_{1}$ and $\alpha^{\prime}=\gamma_{2}$ or $\alpha=\gamma_{2}$ and $\alpha^{\prime}=\gamma_{1}$, and the number of γ_{1} among $\alpha_{1}, \ldots, \alpha_{n}, \alpha^{\prime}$ is even; including zero. Arguments similar to
the above show that $F(r)=p_{1}$ for r in $\left[\mathscr{H}_{1}\right]$, and

$$
\begin{align*}
& F\left(\left[T_{1} X, T_{1} Y\right]\right)=p_{1}\{1-F([Y, X])\} \tag{5.11}\\
& 1-F\left(\left[T_{2} X, T_{2} Y\right]\right)=p_{2}\{1-F([X, Y])\}
\end{align*}
$$

where $[X, Y]$ is any of the above intervals in which $P(r)=0$. We can thus again compute the value of $F(r)$ for any interval not belonging to the support of $P(r)$.

6. Conclusion

Let us note that the shape of the probability distribution is partly independent of the explicit recurrence relation. Namely, any mapping $r_{n+1}=T_{a}\left(r_{n}\right)$ which is monotonous with respect to both r_{n} and a, yields the same kind of behaviour.

Since any point of the support \mathscr{G} of the probability distribution $P(r)$ is associated with an infinite sequence of mappings, it can be viewed as the realisation of the corresponding pattern of the random parameters along the chain. If the parameters were not random, the support \mathscr{G} would be reduced to a single point. Thus the effect of the disorder is to spread the probability distribution. The possible disconnected nature of the support of $P(r)$ is related to the disconnectedness of the support \mathscr{A} of the probability distribution of the random parameters. In particular, a Cantor set may occur only if \mathscr{A} consists of a finite number of points. The existence of holes reflects the fact that some values of the free energy cannot be reached; it is a blocking effect due to the discrete nature of the random variables.

The spreading of the probability distribution may be related to the existence of a large number of stable or metastable phases in the system (De Dominicis et al 1980, Parisi 1983).

Acknowledgments

We are thankful to J. des Cloizeaux for useful discussions, and to B Pidoux for his help with the numerical calculations.

Appendix 1. Determination of \mathscr{R}_{0}

We determine the minimum and the maximum values $r_{\min }^{(n)}$ and $r_{\text {max }}^{(n)}$ of r after n iterations, and their limits $r_{\min }$ and $r_{\max }$ for large n. For brevity the point $T_{a_{n}} \ldots T_{a_{1}}(0)$ will be denoted by $\left(a_{n}, \ldots, a_{1}\right)$. Let us denote by $\alpha(\operatorname{resp} \bar{\alpha})$ the non-negative (resp. non-positive) values of a_{i}. The maximum and minimum values among the α (resp. $\bar{\alpha}$) are denoted by $\alpha_{\text {max }}$ and $\alpha_{\text {min }}$ (resp. $\bar{\alpha}_{\text {max }}$ and $\bar{\alpha}_{\text {min }}$):

$$
\begin{equation*}
-1 \leqslant \bar{\alpha}_{\min } \leqslant \bar{\alpha} \leqslant \bar{\alpha}_{\max } \leqslant 0 \leqslant \alpha_{\min } \leqslant \alpha \leqslant \alpha_{\min } \leqslant 1 . \tag{A1.1}
\end{equation*}
$$

One has to distinguish three cases.
(1) The a_{i} take only non-negative values. Starting from $r=0$, it follows from property (ii) (here and in what follows the properties (i), (ii) or (iii) refer to those given in § 4) of $T_{a}(r)$ that at the first step $r_{\min }^{(1)}=\left(\alpha_{\min }\right)$ and $r_{\max }^{(1)}=\left(\alpha_{\max }\right)$. Then, property (i) implies that at the second step the extreme values of r for a given $\alpha>0$ are ($\alpha \alpha_{\min }$)
and ($\alpha \alpha_{\text {max }}$) Now allowing α to vary and using the property (ii) one finds that $r_{\min }^{(2)}=\left(\alpha_{\min } \alpha_{\min }\right)$ and $r_{\max }^{(2)}=\left(\alpha_{\max } \alpha_{\max }\right)$. Repeating this argument one obtains from property (iii) in the limit

$$
\begin{equation*}
r_{\min }=f_{\alpha_{\min }}, \quad r_{\max }=f_{\alpha_{\max }} . \tag{A1.2}
\end{equation*}
$$

(2) The a_{i} take positive and negative values. From property (ii) one has $r_{\min }^{(1)}=\left(\bar{\alpha}_{\text {min }}\right)$ and $r_{\text {max }}^{(1)}=\left(\alpha_{\text {max }}\right)$. In the second step one has to consider the sign of a_{2}. For a given $\alpha>0$ one gets at the second step the extreme values ($\alpha \bar{\alpha}_{\text {min }}$) and ($\alpha \alpha_{\text {max }}$). Varying $\alpha>0$ yields from property (ii) the least and the greatest values ($\alpha_{\min } \bar{\alpha}_{\text {min }}$) and $\left(\alpha_{\max } \alpha_{\max }\right.$). For $\bar{\alpha}<0, T_{\bar{\alpha}}$ is a decreasing function of r. Then one obtains the extreme values $\left(\bar{\alpha}_{\text {min }} \alpha_{\text {max }}\right.$) and ($\bar{\alpha}_{\text {max }} \bar{\alpha}_{\text {min }}$). Now using property (ii) one has ($\bar{\alpha}_{\text {max }} \bar{\alpha}_{\text {min }}$) \leqslant $\left(\alpha_{\min } \bar{\alpha}_{\min }\right)$ and therefore $r_{\min }^{(2)}=\left(\bar{\alpha}_{\text {min }} \alpha_{\text {max }}\right)$ and $r_{\text {max }}^{(2)}=\left(\alpha_{\text {max }} \alpha_{\text {max }}\right)$. Repeating the above argument one finds from property (iii) that

$$
\begin{equation*}
r_{\min }=T_{\bar{\alpha}_{\min }}\left(f_{\alpha_{\max }}\right), \quad r_{\max }=f_{\alpha_{\max }} . \tag{A1.3}
\end{equation*}
$$

(3) The a_{i} take only non-positive values. From property (ii), at the first step $r_{\text {min }}^{(1)}=\left(\bar{\alpha}_{\text {min }}\right)$ and $r_{\text {max }}^{(1)}=\left(\bar{\alpha}_{\text {max }}\right)$. For a given $\bar{\alpha}<0, T_{\bar{\alpha}}$ is a decreasing function of r, property (i); consequently at the second step the extreme values of r are ($\bar{\alpha} \bar{\alpha}_{\text {max }}$) and $\left(\bar{\alpha} \bar{\alpha}_{\text {min }}\right)$. Allowing $\bar{\alpha}$ to vary and using property (ii) one gets $r_{\text {min }}^{(2)}=\left(\bar{\alpha}_{\text {min }} \bar{\alpha}_{\text {max }}\right)$ and $r_{\text {max }}^{(2)}=\left(\bar{\alpha}_{\text {max }} \bar{\alpha}_{\text {min }}\right)$. Repetition of this argument implies

$$
\begin{equation*}
r_{\min }^{(n+1)}=T_{\bar{\alpha}_{\min }}\left(r_{\max }^{(n)}\right), \quad r_{\max }^{(n+1)}=T_{\bar{\alpha}_{\max }}\left(r_{\min }^{(n)}\right) . \tag{A1.4}
\end{equation*}
$$

Hence in the large n limit, $r_{\text {min }}$ and $r_{\text {max }}$ are the attractive fixed points of the homographic mappings $T_{\dot{\alpha}_{\text {min }}} T_{\bar{\alpha}_{\text {max }}}$ and $T_{\bar{\alpha}_{\text {max }}} T_{\bar{\alpha}_{\text {min }}}$ respectively.

The arguments developed above use the fact that the initial value of r is zero. Actually we could have started with any point on the real line and ended in the limit of a large number of iterations with the same domain $\mathscr{R}_{0}=\left[r_{\min }, r_{\max }\right] \dagger$. This follows from the fact that in the iterative procedure a point r is either in \mathscr{R}_{0} and from (4.8) all its images remain in \mathscr{R}_{0}, or it is in \mathscr{X}_{0} and then the probability for all its successive images to remains in \mathscr{D}_{0} vanishes in the limit of a large number of iterations. Indeed, taking into account the attractive character of the fixed points in terms of which $r_{\text {min }}$ and $r_{\text {max }}$ are expressed in table 3, one shows that for any r in \mathscr{D}_{0} there exists an integer n and a set $\left\{a_{1}, \ldots, a_{n}\right\}$ such that $T_{a_{n}} \ldots T_{a_{1}}(r)$ belongs to \mathscr{R}_{0}. Then the probability p that at least one image of r after n steps of iterations belongs to \mathscr{R}_{0} satisfies

$$
\begin{equation*}
p \geqslant \prod_{i=1}^{n} p\left(a_{i}\right)>0 \tag{A1.5}
\end{equation*}
$$

Consequently, from the independence of the random variables a_{i}, the probability that all the images of r after $n m$ iterations be outside \mathscr{R}_{0} is $(1-p)^{m}$ which goes to zero as m tends to infinity.

Appendix 2. Proof of equations (4.11) and (4.12)

Since for all non-zero a, T_{a} maps \mathbb{R} onto \mathbb{R} (property (v) of $\S 4$), for any $a \neq 0$ and all r^{\prime} there exists an $r(a)$ such that $r^{\prime}=T_{a}[r(a)]$.
$\dagger \mathbf{J}$ des Cloizeaux, private communication.

We first derive equation (4.11), namely we show that for all $i=0,1, \ldots$ the two sets $\mathscr{R}_{i+1}=\mathbb{R}-\mathscr{D}_{i+1}$ and $\bigcup_{a \in \mathscr{A}} T_{a}\left(\mathscr{R}_{i}\right)$ are equal. Indeed, r^{\prime} belongs to \mathscr{R}_{i+1} iff it does not belong to \mathscr{D}_{i+1}, i.e. iff there exists an a in \mathscr{A} such that $r(a)$ does not belong to \mathscr{D}_{i} and thus belongs to $\mathscr{R}_{i}=\mathbb{R}-\mathscr{D}_{i}$. Finally r^{\prime} belongs to \mathscr{R}_{i+1} iff there exists an a in \mathscr{A} such that $r(a)$ belongs to \mathscr{R}_{i} and thus iff r^{\prime} belongs to $\bigcup_{a \in \mathscr{A}} T_{a}\left(\mathscr{R}_{i}\right)$.

Let us now show by induction that the $\mathscr{R}_{i} ; i=0,1, \ldots$ form a sequence of nested intervals. It follows from (4.8) and (4.11) that $\mathscr{R}_{1} \subseteq \mathscr{R}_{0}$. Let us assume $\mathscr{R}_{i} \subseteq \mathscr{R}_{i-1}$. From (4.11), for all r^{\prime} in \mathscr{R}_{i+1} there exists an a in \mathscr{A} and an r in \mathscr{R}_{i} such that $r^{\prime}=T_{a}(r)$. Now r in \mathscr{R}_{i} is also in \mathscr{R}_{i-1} from our inductive assumption; therefore $T_{a}(r)$ i.e. r^{\prime} belongs to \mathscr{R}_{i}.

Appendix 3. About the existence of holes in \mathscr{R}_{0}

(i) $0<\gamma_{1}<\gamma_{2}$. A partial answer for the relative positions of $T_{1}\left(f_{2}\right)$ and $T_{2}\left(f_{1}\right)$ is as follows.

Since one has:

$$
\begin{equation*}
T_{1}\left(f_{2}\right)=\left(\gamma_{1} / \gamma_{2}\right) T_{2}\left(f_{2}\right)=\left(\gamma_{1} / \gamma_{2}\right) f_{2} \tag{A3.1}
\end{equation*}
$$

we consider the function $\varphi(\gamma)=f_{\gamma} / \gamma^{2}$, where f_{γ} is given by equation (4.1). The values of $\varphi(\gamma)$ are $+\infty$ and $b^{1 / 2}$ for $\gamma=+0$ and 1 respectively. The sign of its derivative $\varphi^{\prime}(\gamma)$ is the same as the sign of $-3 b-(2-\gamma)(1-2 \gamma) / \gamma$. This factor vanishes at

$$
\begin{equation*}
\gamma=c \equiv \frac{1}{4}\left\{5-9 b-3[(1-b)(1-9 b)]^{1 / 2}\right\} \tag{A3.2}
\end{equation*}
$$

Therefore, $\varphi^{\prime}(\gamma)<0$ either if $b \geqslant \frac{1}{9}$ or if $b<\frac{1}{9}$ and $\gamma_{2} \leqslant c$, and that $\varphi^{\prime}(\gamma)>0$ if $b<\frac{1}{9}$ and $c \leqslant \gamma_{1}$. One thereby finds that:

If $\frac{1}{9} \leqslant b \leqslant 1$ all $0<\gamma_{1}<\gamma_{2}$, or if $b<\frac{1}{9}$ and $0<\gamma_{1}<\gamma_{2} \leqslant c$, then $T_{1}\left(f_{2}\right)<T_{2}\left(f_{1}\right)$ and there are holes in \mathscr{R}_{0}.

If $b<\frac{1}{9}$ and $c \leqslant \gamma_{1}<\gamma_{2}$ then $T_{1}\left(f_{2}\right) \geqslant T_{2}\left(f_{1}\right)$ and there are no holes in \mathscr{R}_{0}.
If $b<\frac{1}{9}$ and $0<\gamma_{1}<c<\gamma_{2}$ the situation is more delicate.
(ii) $\gamma_{1}<0<\gamma_{2}$. About the relative position of $T_{1} T_{1}\left(f_{2}\right)$ and $T_{2} T_{1}\left(f_{2}\right)$ the result is

$$
\begin{equation*}
T_{1} T_{1}\left(f_{2}\right)<T_{2} T_{1}\left(f_{2}\right) \Longleftrightarrow 1-b \gamma_{2} / \gamma_{1}>\gamma_{2}-\gamma_{1} \tag{A3.3}
\end{equation*}
$$

One should note that this condition is especially satisfied for all γ_{2} if $\gamma_{1}+b \geqslant 0$. These results follow from the fact that the first inequality of (A3.3) is equivalent to $T_{2} T_{1}\left(f_{2}\right)>0$. Note that in the special case $-\gamma_{1}=\gamma_{2}=\gamma>0$ there exist holes in \mathscr{R}_{0} iff (see figure 6).

$$
\begin{equation*}
1+b>2 \gamma \tag{A3.4}
\end{equation*}
$$

References

Derrida B, Vannimenus J and Pomeau Y 1978 J. Phys. C: Solid State Phys. 114749
Dyson F J 1953 Phys. Rev. 921331
Edwards S F and Anderson P W 1975 J. Phys. F: Met. Phys. 5985
Fan C and McCoy B M 1969 Phys. Rev. 182614
Furstenberg H 1963 Trans. Am. Math. Soc. 108377
Györgyi G and Rujan P 1984 Eötvös University Budapest, Hungary preprint
Hausdorff F 1957 Set Theory (New York: Chelsea Publishing Co)
Maillard J M 1978 Thèse de 3^{e} cycle, Université Pierre et Marie Curie Paris
Parisi G 1983 Phys. Rev. Lett. 501946

[^0]: + Chercheur CNRS.

