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One-dimensional random Ising models 

J M Normand, M L Mehtai and H Orland 
Service de Physique Thiorique, C E N  Saclay, Orme des Merisiers, 91 191 Gif-sur-Yvette, 
Cedex France 

Received 1 1  June 1984 

Abstract. A study of several one-dimensional random Ising chains and strips is presented. 
The free energy is expressed in terms of a probability distribution, the support of which 
is studied with use of a recurrence relation. The shape of the support is shown to vary 
from a connected set to a Cantor set depending on the type of randomness. Monte Carlo 
calculations and analytical approximations are presented. 

1. Introduction 

A lot of effort has been devoted to the study of disordered systems. In particular, the 
random bond or spin glass systems and the random field systems, although partly 
understood, remain rather mysterious. The difficulty in the study of these systems is 
that one has to make quenched averages, i.e. average observables or the free energy. 

Several methods have been used in order to perform the quenched average, such 
as replicas (Edwards and Anderson 1975), the use of dynamics (De Dominicis 1978) 
and the averaging over stochastic equations of motion (De Dominicis 1979). However, 
none of these methods is really satisfactory, in the sense that at some stage some ad 
hoc ansatz has to be made in order to make the problem tractable. 

The one-dimensional random-field Ising model has been solved for a specific type 
of randomness (Fan and McCoy 1969, Brandt and Gross 1978, Derrida er al 1978, 
Bruinsma and Aeppli 1983, Gyorgi and Rujin 1984) and exhibits a very rich behaviour 
with a transition line in the ( H /  J,  J /  T )  plane. These studies exhibit a devil’s staircase 
integrated probability distribution. This behaviour is suggestive of the complexity that 
may occur in higher dimensions. 

The previous results are generalised with respect to both the models and the nature 
of the randomness. We consider one-dimensional random-field Ising models as well 
as spin glass (i.e. random bond) models on a two-layer strip. These models are studied 
for various probability distributions of the random variables. In § 2, we present three 
simple spin Hamiltonians. The analytical relations between their partition functions 
are derived. The general formulation for the calculation of the free energy per site is 
given in § 3 assuming random couplings or fields. The result is given in terms of a 
probability density, the support of which is studied in § 4. Section 5 is devoted to 
some special cases which illustrate the results of 8 4. In particular it is shown that 
under certain conditions the support undergoes a transition from a connected set to 
a Cantor set. Some numerical and analytical approximations are presented. 
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622 J M Normand, M L Mehta and H Orland 

2. Three models and their interrelations 

The three models we consider are: 

is for N = 2,3 , .  . . 
(1 )  An Ising chain of N sites in a magnetic field (figure l (a) ) .  The Hamiltonian 

(2) An Ising strip of width two and N / 2 -  1 squares ( N  sites, figure l (b)) .  The 
Hamiltonian is for N = 4,6, . . . 

(3) An Ising strip of width two and t + t' triangles ( N  = t + t ' +  2 sites, figure 1 ( c ) ) .  
The Hamiltonian is for t = 1,2, .  . . and t'  = t - 1 or t 

(2.3) 

Denoting by X these nearest neighbour ( N N )  Ising Hamiltonians, we consider the 
high-temperature expansion of the partition function for N sites 

which reads 

e 
1 I J, i r l  N 

la 1 

J 3 . 1  

I T ]  
1 i J j , ,  it1 NI 2 

( b )  

1 t +I 

IC) 

Figure 1. Labelling of coupling constants for the three k i n g  models considered. 
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where 
N 

zN= n ( l+xw')  n 
N N  bonds r = l  

x,,, = tanh(PJ,.7,), h, = tanh(PH,), 

and  s and s' label the lattice sites. 
We are interested in the free energy per site in the thermodynamic limit, i.e. 

f = Iim - ( NP)- '  In Z?,, 
N-CS 

the non-trivial part of which is given in terms of 

g = lim gN, gN = N-' In zN. 
N-CS 

We now derive a three-point recurrence relation for zN which happens to be the 
same for the three systems considered. This recurrence relation is based on the graphical 
representation of the high-temperature expansion. Namely, zN is expanded as a series 
of powers of xys, and h,  and each term in the sum is represented by a configuration 
of paths drawn on the lattice. Each of these paths is either a closed polygon or  a path 
with two ends, a bond being used at most once. For each path, each bond contributes 
an x,, and each end point an h,. In what follows, the x and the J related by equation 
(2 .7)  carry the same indices; these indices are specified in figure I .  

For the Ising chain in an  external field, equation (2.5) reads 

N- l  N 

Zk = 2 N  n cosh(PJi) n cosh(PH,)z;. 
i=l I = I  

(2.10) 

On a chain there is no closed polygon and only paths with two end points contribute 
to z;. Thus z;+~ is a sum of three terms 

(2.1 1 )  

which correspond respectively to all configurations of paths (i) without the bond N, 
N + 1, (ii) without the bond N - 1, N but with the bond N, N + 1 and ( i i i )  with both 
the bonds N - I ,  N and N, N + I .  Ignoring the upper index of z, the initial conditions 
are 

I I  zL+i = z L + z Z I N - ~ X N ~ N ~ N + ~ + ( Z N - Z N - ~ ) X N ~ N + ~ / ~ , ~ ,  

zo= ZI = I .  (2.12) 

For a strip of squares, labelling z by n =$N, one has 

(2.13) 

In zero field, only closed polygons contribute to z:. Arguments similar to the above give 

z:+I = z:+ z : - I x ~ , " x Z , ~ X ~ , ~ X Z , ~ + ~  + ( Z f , - - Z S , - I ) X l , n X 3 . n X * , n + l / ~ Z , n r  (2.14) 

with the initial conditions (2.12). 
For a strip of triangles, labelling z by n = N - I ,  one has 

Z', = 2 N  n cosh(PJ,,y,)z%, 
N N  bonds 

(2.15) 
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where z: satisfies equation (2.12) and a three-point recurrence relation similar to 
equation (2.14). 

Hence, in these three cases the recurrence relation for z is of the form 

z , + ~  =(l+a,)z , -a , ( l -b , )z , - , ,  n = 1,2, .  . . (2.16) 

with the initial conditions (2.12). The a, and 6, are listed in table 1 and satisfy 

0 ~ 6 ~ ~ 1 ,  O S  a ; b n / b n + , S  1, n = 1,2 , .  . . . (2.17) 

If one has the same set {a,,; n = 1,2 , .  . .} and the same set {b,; n = I ,  2 , .  . .} for any 
two of the three cases considered above, the recurrence relations (2.16) will be the 
same. The initial conditions being the same, the corresponding z, will be equal. One 
thereby relates the partition functions Z!,, 2;" and Z ; + [ ,  i.e. they differ only by powers 
of two and products of factors cosh p J  and cosh pH. This equivalence between the 
three cases can also be obtained directly by suitable changes of the variables a, in (2.4)t. 

Let us notice that a recurrence relation similar to equation (2.16) can also be derived 
for the O ( n )  vector spin model for the square strip problem. This study will be 
published elsewhere. 

3. General formulation for random systems 

In the models of disordered systems the coefficients of the recurrence relation for zN 
are random variables. Then the calculation of g is seen to be equivalent to finding 
the behaviour for large N of a product of either N two by two random matrices or 
N random homographic transformations. It is also equivalent to solving an integral 
equation for a probability density P ( r )  such that 

dr P (  r )  In( 1 + r ) .  (3.1) 

The quantity g is usually referred as the Lyapunov exponent of the probability density. 
Indeed, to go further in the computation of z,, let ui, U, be defined by 

i = 1, 2, , . 1 + a ,  -at( 1 - 6,) 
0 (3.2) 

with uI = v ,  = 1. Then one has 

z ,  = U,, n = 1,2, . . . . (3.3) 
Another formulation in terms of homographic mappings is obtained by setting u , / u ,  = 
1 + r,, i = 1,2,  . . . . Then one gets r ,  = 0 and 

r,+l = Q , ( r , + h ) / ( r ! + 1 ) =  T , ( r , ) ,  i = 1,2, .  . . . (3.4) 
Instead of T, we also use the notation Ta,, b,. Equation (3.3) now becomes 

n 

z , = n  ( l + r i )  
,=I 

(3.5) 

t We are grateful to B Derrida for informing us that the similarity between 2; and .Z;n was also noticed 
by Maillard (1978). 
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Let the a, and b, take values which are either well defined or at random with a normalised 
probability density pn(anr b,; . . . ; a,, b l ) .  It follows that the normalised density distri- 
bution P,( r )  of the r is given for n = 1,2, . . . by 

P , ( r )  = 5 fi dag dbzpn(an, b n ; .  . . ; a13 bi)S[r- T n . .  + Ti(O)I, (3.6) 
I = I  

and the integrated distribution function F,( r )  reads 

F n ( r )  = [:mdrr P n ( r ’ )  

As the partition function (2.4) is positive, so is 2,. Hence 1 + ri is positive for i = 1,2, . . . . 
Therefore, P , ( r )  and F,(r) vanish for r <  -1. Then the non-trivial part g,, equation 
(2.9), of the free energy per site is expressed in terms of 

5 1 1 “  
- l n z , = -  l n ( l + r , ) =  d r P , , ( r ) l n ( l + r )  
n n , = I  

In order to obtain the thermodynamic limit (2.8) one has to find the behaviour for 
large n of either the product of matrices M ,  . . . MI or the density distribution P,( r ) .  
Assuming the pairs a,, b, independent and distributed vcording to p (  a,, b,) and taking 
the limit of P , ( r )  as n goes to infinity, one gets a stationary distribution P ( r ) ;  solution 
of the integral equation (Dyson 1953) 

d a  dbp(a,  b )  dr‘P(r‘)S{r-  Tll,b(r’)} ,  J (3.9) 

with the boundary condition 

P ( r ) = O  for r< - - l .  (3.10) 

Then g is given by (3.1). The integrated distribution function satisfies (provided Ta,b 
has an inverse Ti,;, i.e. a # 0) 

d a  dbp(a,  b ) { 8 ( r - ~ ) + s g n ( a ) F [ T , ~ ( r ) ] } ,  (3.1 1) 

where s g n ( a ) = l  if a>O and -1 if a < 0 ,  and F ( r )  vanishes for r<-1.  
For the existence of the thermodynamic limit g and the stationary distribution P (  r )  

referred above, we can appeal to Furstenberg’s theorems (Furstenberg 1963). Actually 
Furstenberg’s results do not always apply as such. Indeed, the matrix elements of M ,  
may be negative and furthermore these matrices are not always independent. This 
follows from the fact that it is the J,, and H, which are assumed to be either well 
defined or independent random variables. Then, from the relations given in table I ,  
if the b, are still independent, this may no longer be true for the a,. Indeed, a, depends 
upon the ratio of parameters at two different sites. For example, if the HI and thus 
the h, ,  i = I ,  . . . , n are independent random variables with the same probability density 
p( h , ) ,  one sees that for n = 2,3,  . . . the ratios pt = h,+,/ h,, i = I ,  , . . , , n - 1 are distributed 



626 J M Normand, M L Mehta and H Orland 

Table 1. Parameters a,  and b, for the three systems considered. N is the number of sites. 

Chain Square strip Triangular strip 
i = l ,  . . . ,  n - I  n = N  n =  N I 2  n = N - I = t + t ' f  1 

i = 2 p -  I = 1,3,. . . i = 2 p  = 2 , 4 , .  . . 

a. 
X2.P+l 

X 3 , P  - 
X4.P 

with a probability density 

P ( p l , .  . . , P,,-~) = 
f 3 0  

dh h " - ' ( p ; - Z p ; - 3 . .  . p n - Z I p ( h ) p ( p l h ) .  . . p(p,,-, . . . p , h ) .  

(3.12) 

Hence, the p, are not independent, except if the density p (  h )  is uniform. The qualitative 
relations between the parameters J,,, ,  H, and a,, b, are summarised in table 2. 

I-, 
Table 2. Qualitative relations between the parameters J , , , ,  H, and Q,, b, for the Ising chain 
and the square strip. For physical cases, a, and b, must satisfy equation (2.17). 

O s b , s I  king Square strip a, 

b,ls 1 b 

independent except I i f p = f  

random, not independent 

H ,  = H J 2 , t  = J 2  random, 
J ,  random J l , ,  and (or) J 3 , c  random independent 

H prob. J 2  prob. p random, not 
J 2 . 1 =  - J 2  prob. I - p  

H, = -H prob. I - p  

H, random (Z * H )  J 2 , ,  random ( #  i J , )  except if the distribution random, 
J ,  random J l , ,  and (or) J , ,  random of H ,  (or J 2 , , )  is uniform independent 

Nevertheless, Furstenberg's results apply to a product of transfer matrices in terms 
of which the partition function (2.4) can be expressed thereby proving the existence 

From now on we consider for simplicity only the cases when bi takes a fixed value 
b ( 0 s  b S 1)  and the ai(lail S 1) are independent random variables with a probability 
density p ( a ) .  As we are unable to solve the integral equations (3.9) or (3.1 l), we study 
the support 9' of the probability density P ( r )  through the iteration equation (3.4). 
General properties of Y are derived in 0 4 and they are illustrated for some particular 
cases in § 5 .  

off: 

4. General properties of the support of P ( r )  

All the results we derive for Y are based on the following properties of the mapping 
T , ( r ) =  Ta,b(r)  (from now on we will drop the fixed index b ) ,  see figure 2: 
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Figure 2. T , ( r )  with a >O. The stable and unstable fixed points are respectivelyf, andfW 

(i) T , ( r )  is a monotonous increasing (resp. decreasing) function of r when a is 

( i i )  It is a monotonous increasing function of a. 
(iii) It has two real fixed points. Actually, we use the homographic character of 

positive (resp. negative). 

T, only to compute these points: 

f, = ; (U  - 1 + A”2),  T a = ~ ( a - 1 - A h ” * )  

A = (  1 - ~ ) ~ + 4 a b  = ( 1  + u ) ’ - ~ u (  1 - b) ,  

and f, is stable while fa is unstable. Furthermore (3.4) can be rewritten as 

l + a - A ” 2  
k, = 

ri+l - f a  ri -fa 
r= k, - 
ri+l - f a  ri -fa ’ 1 + a  + A ’ / *  ’ 

(4.1 ) 

(4.2) 

and k, has the same sign as a. Hence for large i, ri tends to fa either in a monotonous 
or oscillating way according to whether a is positive or negative. 

(iv) T a ( r )  is linear in a and T - , ( r )  = - T , ( r ) .  
(v) For all a # 0, T,( r )  maps the real line R onto itself. 
Let d be the set of possible values of a. From equation (3.6) the support 9, of 

P n ( r )  is 

y n = { T a n * - .  Ta,(O); VU,,  . . . ,  u,E&}, (4.3) 

namely a set of at most X”  points if SP has a finite number X of elements. If zero is 
a possible value of a, then, since To( r )  = 0, one generates at each step of iteration the 
initial value r = 0. One therefore has 

if OE d then 9, c YnPntl, n =o,  1 , .  * .  . (4.4) 

if d a )  = p ( - a )  then P (  r )  = P (  - r ) ,  (4.5) 

It follows from property (iv) and equation (3.6) that 

and therefore also F ( r )  + F ( - r )  = 1. 
Using the iterative scheme, we determine in appendix 1 the minimum and the 

maximum values rmi,  and rmax that r takes in the support 9. These values are listed 
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Table 3. rmln and rmaX are the end points of the smallest interval WO outside of which P (  r )  
vanishes. The maximum and the minimum values taken by the parameter a are given in 
terms of the a in the first column for the three considered cases, cf appendix 1. f, is 
the attractive fixed point of T, gaven by equation (4.1). 

- 1 s a;,,, s a,,, s 0 attractive fixed point of attractive fixed point of 
Teml"TLimAX Th.Te , ,"  

in table 3 for the three cases we have to distinguish namely a takes values which are 
( 1 )  non-negative, (2) positive and negative and (3) non-positive. Hence the support 
Y of P ( r )  is within the finite interval Bo 

(4.6) 

(4.7) 

E 30 = [rmin, rmaxlr  

and P ( r )  vanishes outside go, i.e. on 

9 0  = R - $ 2 0 ,  

The interval %o is also characterised by the following property: it is the largest interval 
such that 

Q r e  %o and Q u e &  T a ( r )  E 30, (4.8) 

In other words, once a point r belongs to %o, all its images in the iterative procedure 
remain in %o. This follows from the property (iii) and the attractive character of the 
fixed points in terms of which rmin and rmax are defined. 

Now, since P ( r )  vanishes on go, from equation (3.9) it also vanishes on the 
intersection of the images T o ( 9 0 )  for all a in d. Repeating this argument one finds 
that P ( r )  vanishes on 

(4.9) 

Consequently, the support Y of P ( r )  is within the complement of 9l with respect to 
the real line, i.e. 

i = O ,  1,  .... (4.10) Y G 3, = R - Bi, 

It is shown in appendix 2 that the sequence of the sets %i is also defined by 

(4.1 1) 

and furthermore it forms a sequence of nested intervals 

% , + I  G %,, i = O , l ,  . . .  (4.12) 

or equivalently from (4.10) Bl E Bl+l. Depending upon the set d and the value b it 
is possible that from some i onwards. Then Y =  9lI. On the 
other hand if %,+, is strictly included in 3, for any i, then at each step a new domain 

= So or that = 
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- %,+, is excluded from the support 9. In other words, more and more ‘holes’ 
appear in 9?o and the support of P( r )  may reduce to a Cantor set, cf § 5.1. 

It should be noted that all the previous discussion of the support of P (  r )  depends 
only upon the value of b and the support d of p ( a ) ,  but not upon the value of the 
probability density p (  a )  itself. All these general considerations are now illustrated 
with some particular examples. 

5. Some special cases 

The support of P ( r )  is studied in the case where the a, take firstly only two values 
and then more than two values. We end this section with some results about the 
integrated distribution function. Typical cases are illustrated by numerical examples. 
The distribution P ( r )  is computed by the Monte Carlo method: the a, are sampled 
according to p ( a )  and the recurrence relation (3.4) is iterated throwing away the first 
generations of points. 

5.1. The a,  take only two values 

( i )  Let us denote these values by y I  and  y2. For brevity, we note TI = T,, and the 
attractive fixed point f ;  = f y , ;  i = 1, 2 ,  given by equation (4.1). The three cases we have 
to distinguish are 

( 1 )  0 s  Y I < Y 2 G  1, 
( 2 )  -1 G y l  < o s  y * s  1 ,  
(3) -1  s yI < y z s o .  

They are associated with figures 3, 4 and 5 respectively. The support 9 of P ( r )  is 
such that Y E  9i!o = [ r , , , ,  rmar]. The values of rmln and rmax are given on the correspond- 
ing figures, except for the third case where the expressions are more complicated, cf 
table 3 .  From equation (4.1 1 )  Z l  = T,,(Zn,) U TY2(9?J, and two cases may occur: 

( 1 )  3!! = 3!o (figures 3 ( a ) ,  4(a)  and 5 ( a ) )  then the support of P ( r )  is Y=%o.  
( 2 )  c z0 (figures 3 ( b ) ,  4 ( b )  and 5 ( b ) ) ,  then a first hole XI = 9?.o-9?.l excluded 

from Y appears in zo. This happens iff 

( 1 )  Tl(rmax)< G ( r m j n ) ,  

( 2 )  Tl(rmin)< T*(rmin), 
( 3 )  TI(rmin)< T:(rmax)?  

respectively for the three cases considered. In  appendix 3 we discuss in terms of y I ,  
yz and b when the two previous conditions can be realised, see also figure 6. Now if 
RI is not empty, it is easy to show on the figures, but cumbersome to describe, that 
g 2  = 9?l - X2 where the new domain X2 excluded from Y is the direct sum of TI ( XI) 
and Tz(Xl). Repeating this argument, one finds that all the images of X I  obtained by 
applying TI or T2 any number of times and in any order are pairwise disjoint and  thus 
excluded from Y. These results directly follow from the fact that To( r )  is a monotonous 
function of r. Thus the number of holes has the power of the continuum. The support 
Y contains the end points of these holes, hence it has also the power of the continuum. 
Actually Y consists of the fixed points of any finite sequence of T,, thew images and 
their accumulation points. Consequently in every neighbourhood of a point of Y there 
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I si (6) 

Figure 3. The mappings T, and the first intervals 3,. 
The a,  take two positive values y ,  and y 2 .  In ( a )  
the support of P( r )  is 9 = %,, and in ( b )  there exists 
an infinite number of holes in go. 

Figure 4. The same as in  figure 3, except that now 
the values of a, are y, < O  and y2>0 .  

I b )  

Figure 5. The same as in figure 3, except that now the values of at are y, < y2 < 0 
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112 1 

1 

Figure 6. The yb plane when the a, take two values + y  and -y. According to equation 
(A3.4) the critical line is indicated. The approximation studied in 0 5 .1 .  ( i i )  is valid in the 
hatched region. 

is a hole. The support Y of P ( r )  is then a Cantor set (e.g. Hausdorff 1957). Figures 
7 and 8 show Monte Carlo calculation for some typical cases. 

(ii) To illustrate the previous results we give an analytical approximation in the 
case when the a, take the values f a  ( a  > 0) with probability t .  Let us define 

b112 = tanh cp, 

r, = b 1 l 2  tanh B,, 

f = f ( - ( l  -a)+[( l  - ~ ) ’ + 4 a b ] ’ ’ ~ ) =  b’” tanh B*. 

The recurrence relation (3.4) becomes 

tanh B,,, = &,a tanh( 0, + cp), ( 5 . 2 )  

where E ,  is + I  with probability 4. Two cases can be approximated easily: 

( 1 )  U + 0, then 8, is of order a and the equation (5.2) can be expanded as 

8,+1= E,a[b’/’+ e,( 1 - b ) ] .  (5 .3)  

(2)  b+O and a #  1, t hen f - [ a / ( l - a ) ]  b and thus B*-[a/( l -a)]  bIi2. Since cp 
is of order b”* and /On[ C B*,  Bn is also of order bl” and equation ( 5 . 2 )  becomes 

e,,, = E,a(b”*+ e n ) ,  (5.4) 

0, = ~ ~ ” * ( E , - ~ + E ~ - ~ E ~ - ~ A + .  . . . E ~ A ~ - ’ ) ,  (5.5) 

Both equations (5 .3 )  and (5.4) are of the same type, and their solutions read 

where in case (1 )  A = a(  1 - b )  and in case ( 2 )  A = a. Since the E ,  are independent 
random variables equal to + I  with probability &, the same holds true for any of their 
products. Therefore the last equation takes the form 
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[ a )  

I i l  

Figure 7. ( a )  The probability distribu- 
tion P( r )  and ( b )  the integrated proba- 
bility distribution F (  r ) ,  calculated 
with 1 1  000 iterations, discarding the 
first 1000. Figure ( a )  is a histogram 
with 640 bins on the r axis. The para- 
meters are y 2 =  - y ,  =0.81 and b =  

-1 0 1 0.64. The support of P (  r )  is a Cantor 
set, and F ( r )  is a devil's staircase. r 

'[ 

I 

-1 0 1 
r 

/ Figure 8. Same as figure 7. The para- 
,/' 
1 meters are y2 = - y ,  = 0.9 and b = 0.25. 

The support of P ( r )  is connected and 
F ( r )  is continuous. 

{ 
0 1 ,  , I , , ' ,  I , I , , , , , , , , , , 

-1 0 
r 
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Now, setting 
with probability 4, and the above equation becomes 

= 2np - I ,  the np are independent random variables equal to 0 or 1 

(5.7) 

Since we are interested in the tail of the distribution of the 8, and A < 1, equation 
(5.7) simplifies to 

, - I  

e, = 2 a b 1 / *  nPAP- ' - -  
p = l  1 - A '  

It follows that the support of the 8, is either a Cantor set if A < i  or a connected 
segment if A sf. Thus in case ( l ) ,  since A + O  the support is always a Cantor set, 
whereas in case ( 2 )  the support exhibits a transition for a = f which is on the transition 
line 2a = 1 + 6, equation (A3.4), in the limit b + 0, see figure 6. 

The Lyapunov exponent, equation (3, l ) ,  can be computed in this approximation. 
One finds 

g = - j a 2 b 2 (  1 - A 2 ) - ' .  (5 .9)  

As expected in a one-dimensional system, the free energy, related to g by equations 
( 2 . 8 )  and (2 .9)  does not have any singularity. 

5.2. The a, take more than two discrete values 

The description of the support Y of P( r )  can now be more complicated. We illustrate 
this by describing the generic case where the a, take three positive values y1 < y 2  < y 3 .  
Then, Y E  9?o = cfl,f3]. Three situations, shown on figures 9(a) ,  (6) and (c) respectively, 
may happen: 

( I )  9? I = %!o then the support of P (  r )  is Y = 
(2) 9?lc 9?o and the hole XI =9?o-9?l is connected. Then, on one side (e.g. the 

right one on figure 9( 6)) there exists an infinite number of pairwise disjoint images of 
RI which are also excluded from the support: while on the other side the number of 
images of XI is finite (possibly zero). Indeed, the lower ends of these images evolve 
by the mapping T2 while the upper ends by TI (for the case of figure 9 ( b ) ) .  Since 
fl<fi, these two ends must cross and the image of the hole disappears without 
descendent. 

c 9?o and the hole RI = %!o - is composed of two disconnected parts. 
Then in each of the three intervals which compose there exists an infinite number 
of pairwise disjoint images of XI, and finally Y is a Cantor set. 

of To given in § 4. 

(3 )  

All the previous results are immediate consequences of the properties (i) and (ii) 

5.3. The a, take a continuous set of values 

( i )  We first consider the case where the a, take their values y in a continuous and 
connected set d = [yl, y2].  Then one sees that in the three possible cases described 
on figures 3, 4 and 5,  as y continuously varies from y1 to y2, T, (920) covers the whole 
Bo. Therefore 9? I = 9?o and the support of P (  r )  is Y = $Z0. 
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i b )  
f l  f z  

Figure 9. The mappings T, and the first sets 3,. The 
a, take three positive values y ,  < y z <  y,. In ( a )  the 
support of P ( r )  is Bo with no hole. In ( b )  there is 
an infinite sequence of holes on the right of the initial 
hole and a finite sequence on its left. In ( c )  there 

I C )  are three infinite sequences of holes. 

(ii) Let now d be the union of two disconnected continuous sets [y l ,  y2] and 
[ y 3 ,  y4]. We consider only the generic case when the ai take positive values (0<  y ,  < 
y2 < y3 < y4). Then using the same arguments as before, one shows that there never 
exists an  infinite number of holes in 9?o. Indeed, either $32, = U y E d  Ty(9?o) = go as in 
figure 10(a)  and then the support of P ( r )  is Y =  9?o, or there exists a first hole 
RI = Bo- as in figure 10( b). But in this latter case, at  the next step, either this hole 
has no descendent as shown on the right-hand side of figure 10( b),  o r  there still exists 
a hole (left-hand side of figure IO( b ) ) .  But as in subsection 5.2 this hole must disappear 
since its lower ends evolve by T2 while its upper ones by TI, and y ,  < y2. 

5.4. The integrated distribution function F(r) 

Clearly F ( r )  = 0 for r < rmin and F ( r )  = 1 for r > rmax. Also F ( r )  is constant in any 
interval in 9?o not belonging to the support of P ( r ) ,  if such interval exists. The value 
of F ( r )  at any of these flat portions can be determined from equation (3.9) if one 
knows how to characterise these flat portions. For simplicity the results arc given only 
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q; ...... 
.... ..... . %.. 

..... 
a7 = 3 1 2  d 

Figure 10. The mappings and the 
first intervals 5?r The a,  take values in 
two disconnected intervals [ y , ,  y 2 ]  and 
[Y, ,  y41 with O <  Y ,  < y 2 <  ~ 3 <  y4. In 
( a )  the support of P ( r )  is 3" with no 
hole. In ( b )  there is a finite sequence 
of holes in the left of the initial hole 
and no hole on its right. 

for the cases studied in § 5.1, when the a, take two values y1 and y2  with probabilities 
pl and p 2  respectively (pl + p 2  = 11, with either 0 c yI < y 2  or yI < 0 s  y 2 .  Then we 
assume that we are in the case when %,,, c 3, for all i = 0, 1 , .  . .  ; i.e. the support of 
P ( r )  is a Cantor set. 

Let us first consider the case when yI and y2 are positive. Then, according to figure 
3 ( b ) ,  F ( r )  is constant in the interval [XI] = [ T1(f2), T2(fl)] where T, = T7,, i = 1, 2 .  It 
is also constant in any image of [ X I ]  by TI and T2 any number of times and in any 
order, i.e. in the interval [To, . . .  To,,Tl(f2), To, . . .  TenT2(fl)], where each a,, j = 1,. . . .  n 
is either yI or y 2 .  As TI maps go on [ f , ,  Tl(f2)] and this happens with probability p I ,  
one has F (  r J  = p ,  for r in [%,I. Since TI maps on the lower side and Tz on the upper 
side, and these with probabilities pl and p 2  respectively, one sees that 

(5.10) 

where [ X ,  Y] is any of the flat portions mentioned above. Thereby we can determine 
the value of F (  r )  for r belonging to any interval where P(  r )  = 0. This kind of integrated 
probability distribution is referred as a devil's staircase, see figure 7( b ) .  

Next, let the a,  take the two values yI  < 0 and  y 2 >  0. According to figure 4(b),  
F ( r )  is constant in the interval [Xl]=[Tl(rmin),  T2(rmin)], rmin= T1(f2). It is also 
constant on the images of [2fll, [ T a , .  . .  Te,,To(rmin), T,, . . .  T,,,To(rmin)] where each a, 
for j = 1 , .  , . ,  n is either yI or y 2 ;  either a = yI and a ' =  y 2  or LY = y 2  and a '= yI, and 
the number of yI  among cyI , .  . . .  a,, a' is even; including zero. Arguments similar to 
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(5.1 1) 

where [ X ,  yl is any of the above intervals in which P( r )  = 0. We can thus again 
compute the value of F ( r )  for any interval not belonging to the support of P ( r ) .  

6. Conclusion 

Let us note that the shape of the probability distribution is partly independent of the 
explicit recurrence relation. Namely, any mapping r, , ,  = T,( r , )  which is monotonous 
with respect to both r, and a, yields the same kind of behaviour. 

Since any point of the support Y of the probability distribution P( r )  is associated 
with an infinite sequence of mappings, it can be viewed as the realisation of the 
corresponding pattern of the random parameters along the chain. If the parameters 
were not random, the support Y would be reduced to a single point. Thus the effect 
of the disorder is to spread the probability distribution. The possible disconnected 
nature of the support of P ( r )  is related to the disconnectedness of the support d of 
the probability distribution of the random parameters. In particular, a Cantor set may 
occur only if d consists of a finite number of points. The existence of holes reflects 
the fact that some values of the free energy cannot be reached: it is a blocking effect 
due to the discrete nature of the random variables. 

The spreading of the probability distribution may be related to the existence of a 
large number of stable or metastable phases in the system (De Dominicis et al 1980, 
Parisi 1983). 
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Appendix 1. Determination of Bo 

We determine the minimum and the maximum values rKlb and r:ix of r after n 
iterations, and their limits r,,, and rmax for large n. For brevity the point T,,, . . . T,,(O) 
will be denoted by (a,, . . . . , a l ) .  Let us denote by a(resp 6 )  the non-negative (resp. 
non-positive) values of a,. The maximum and minimum values among the a(resp. a )  
are denoted by amax and a,,, (resp. a,,, and Cy,,,): 

( A l . l )  - 1 s Ly,,, s Cy s Cy,,, s 0 s a,,, s a s a,,, s I .  

One has to distinguish three cases. 

( 1 )  The a, take only non-negative values. Starting from r = 0, it follows from 
property (ii)(here and in what follows the properties (i), (ii) or (iii) refer to those given 
in 0 4) of T , ( r )  that at the first step r z ; , =  (a,,,) and r c i x = ( a m a x ) .  Then, property (i) 
implies that at the second step the extreme values of r for a given a > 0 are ( a m m l , )  
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and (aamax)  Now allowing a to vary and  using the property (ii) one finds that 
rmln - ( amlnamln) and r:Ax = ( amaxamax). Repeating this argument one obtains from 
property (iii) in the limit 

rmin =fa.,,,, rmax =fa,,; (A1.2) 

(2) The a, take positive and negative values. From property (ii) one has r;ln = (tim,,,) 
and rEAx = ( amax). In the second step one has to consider the sign of a,.  For a given 
a > 0 one gets at the second step the extreme values (acimln) and (aamax) .  Varying 
a > 0 yields from property (ii) the least and the greatest values (am,,cim,,) and  
(amaxamax). For ci < O ,  T6 is a decreasing function of r. Then one obtains the extreme 
values (Em,,amax) and (Gmaxcimln) .  Now using property (ii) one has ( c i m a x c i m I n ) ~  
( am,,cim,,) and  therefore r:,), = ( cimlnamax) and  r:Ax = ( amaxam,,). Repeating the above 
argument one finds from property (iii) that 

( 2 )  - 

rmnn = T s m , n K m d x ) ,  rmax =fa,,; (A1.3) 

(3) The a, take only non-positive values. From property (ii), at  the first step 
rEln = (Eml,,) and  rEix  = (cimax).  For a given ci C O ,  T6 is a decreasing function of r, 
property (i) ;  consequently at the second step the extreme values of r are (cicimax) and 
(Cuci,,,). Allowing ci to vary and using property (ii) one gets r:?, = (cimlncimax) and  
rmax  - (Cuma,cim,,). Repetition of this argument implies ( 2 )  - 

r L l n  f l + l ) =  ~6~ n(r2A) ,  rmax  ( , , + I )  = TEmax(rmin). ( n )  (A1.4) 

Hence in the large n limit, rmln and rmax are the attractive fixed points of the homographic 
mappings Ts,,, TE,,, and Ts,,,Ts,,, respectively. 

The arguments developed above use the fact that the initial value of r is zero. 
Actually we could have started with any point on the real line and ended in the limit 
of a large number of iterations with the same domain Bo = [rmln, r m a x ] t .  This follows 
from the fact that in the iterative procedure a point r is either in 9?.o and from (4.8) 
all its images remain in %o, or it is in %o and then the probability for all its successive 
images to remains in go vanishes in the limit of a large number of iterations. Indeed, 
taking into account the attractive character of the fixed points in terms of which rmin 
and rmax are expressed in table 3, one shows that for any r in $?do there exists an  integer 
n and a set { a , ,  . . . , a,,}  such that T a n .  . . To,( r )  belongs to 9?o. Then the probability p 
that at least one image of r after n steps of iterations belongs to 9?.o satisfies 

(A1.5) 

Consequently, from the independence of the random variables a,, the probability that 
all the images of r after nm iterations be outside %,, is ( 1  - p ) "  which goes to zero as 
m tends to infinity. 

Appendix 2. Proof of equations {4.11) and (4.12) 

Since for all non-zero a, T, maps R onto R (property (v) of Q 4), for any a # 0 and all 
r' there exists an r ( a )  such that r ' =  T , [ r ( a ) ] .  

? J des Cloizeaux, private communication. 
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We first derive equation (4.1 l ) ,  namely we show that for all i = 0, 1 , .  . . the two 
sets iff it does 
not belong to 91+,, i.e. iff there exists an a in d such that r ( a )  does not belong to 9, 
and thus belongs to %, = R - 9,. Finally r’ belongs to iff there exists an a in d 
such that r ( a )  belongs to 

i = 0, 1 , .  . . form a sequence of nested 
intervals. It follows from (4.8) and (4.1 1) that 
From (4.1 l ) ,  for all r’ in such that r ’=  T a ( r ) .  
Now r in 2, is also in from our inductive assumption; therefore T a ( r )  i.e. r’ 
belongs to 

= R - 9,+, and uaEd To(%,) are equal. Indeed, r’ belongs to 

and thus iff r’ belongs to  uaEd Ta(%,) .  
Let us now show by induction that the 

E Bo. Let us assume 9, E 
there exists an a in is and an r in 

Appendix 3. About the existence of holes in W O  

(i) O <  yI  < y2. A partial answer for the relative positions of TIcf2) and TZUl) is 

Since one has: 
as follows. 

TIu-2) = (Yl/Y2)TZ(f2) = (Yl/Y2)f2, (A3.1) 

we consider the function cp(y) = f y / y 2 ,  wheref, is given by equation (4.1). The values 
of q( y) are +a and 6‘” for y = +O and 1 respectively. The sign of its derivative cp’( y )  
is the same as the sign of -36 - (2 - y)( 1 - 2y)/  y. This factor vanishes at 

y = c s + { 5  -96  -3[( 1 - b ) (  1 -96)]”’}. (A3.2) 

Therefore, cp’( y)  < 0 either if b 2 4 or if b < 4 and y2 s c, and that cp‘( y )  > 0 if b < 4 and 
C S  y , .  One thereby finds that: 

If 4s b c  1 all O <  y I  < yz, or if b<4 and O <  y1 < y 2 c  c, then TIU2)< T2(f1) and 

If b < 4 and c C yI  < y2 then Tl(f2) 2 T2(f1) and there are no holes in %,,. 
If 6 < 4 and 0 < y1 < c < y 2  the situation is more delicate. 

(ii) yI  < O <  y2. About the relative position of TlTl(f2) and T 2 T 1 ( f 2 )  the result is 

Tl7’l(f2)< TZTl(f2)- l-by,/Yl> y2-yI. (A3.3) 

One should note that this condition is especially satisfied for all y2 if yI  + b 2 0. These 
results follow from the fact that the first inequality of (A3.3) is equivalent to T27’,(f2) > 0. 
Note that in the special case -yl  = y2  = y >  0 there exist holes in 9, iff (see figure 6 ) .  

l + b > 2 y .  (A3.4) 

there are holes in Z0. 
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